/* By TK-Master */ #include "VictoryBPLibraryPrivatePCH.h" #include "TKMathFunctionLibrary.h" #include "StaticMeshResources.h" //UTKMathFunctionLibrary float UTKMathFunctionLibrary::GetConsoleVariableFloat(FString VariableName) { const auto CVar = IConsoleManager::Get().FindTConsoleVariableDataFloat(*VariableName); if (CVar) { return CVar->GetValueOnGameThread(); //return CVar->GetValueOnAnyThread(); } return 0.f; } int32 UTKMathFunctionLibrary::GetConsoleVariableInt(FString VariableName) { const auto CVar = IConsoleManager::Get().FindTConsoleVariableDataInt(*VariableName); if (CVar) { return CVar->GetValueOnGameThread(); //return CVar->GetValueOnAnyThread(); } return 0; } float UTKMathFunctionLibrary::NegateFloat(float A) { return -A; } int32 UTKMathFunctionLibrary::NegateInt(int32 A) { return -A; } FVector2D UTKMathFunctionLibrary::NegateVector2D(FVector2D A) { return -A; } FVector UTKMathFunctionLibrary::SetVectorLength(FVector A, float size) { return A.GetSafeNormal() * size; } FVector UTKMathFunctionLibrary::VectorRadiansToDegrees(FVector RadVector) { return FVector::RadiansToDegrees(RadVector); } FVector UTKMathFunctionLibrary::VectorDegreesToRadians(FVector DegVector) { return FVector::DegreesToRadians(DegVector); } int32 UTKMathFunctionLibrary::RoundToLowerMultiple(int32 A, int32 Multiple, bool skipSelf) { int32 result = (A / Multiple) * Multiple; if (skipSelf && result == A && result != 0) { return ((A-1) / Multiple) * Multiple; } return result; } int32 UTKMathFunctionLibrary::RoundToUpperMultiple(int32 A, int32 Multiple, bool skipSelf) { if (skipSelf || FMath::Fmod(A, Multiple) != 0) { A = ((A + Multiple) / Multiple) * Multiple; } return A; } int32 UTKMathFunctionLibrary::RoundToNearestMultiple(int32 A, int32 Multiple) { return ((A + Multiple / 2) / Multiple) * Multiple; } bool UTKMathFunctionLibrary::IsPowerOfTwo(int32 x) { //return x && ((x&-x) == x); return FMath::IsPowerOfTwo(x); } bool UTKMathFunctionLibrary::IsMultipleOf(int32 A, int32 Multiple) { return FMath::Fmod(A, Multiple) == 0; } bool UTKMathFunctionLibrary::IsEvenNumber(float A) { return FMath::Fmod(A, 2) == 0; } FVector UTKMathFunctionLibrary::ClosestPointOnSphereToLine(FVector SphereOrigin, float SphereRadius, FVector LineOrigin, FVector LineDir) { static FVector OutClosestPoint; FMath::SphereDistToLine(SphereOrigin, SphereRadius, LineOrigin, LineDir.GetSafeNormal(), OutClosestPoint); return OutClosestPoint; } FVector UTKMathFunctionLibrary::ClosestPointOnLineSeqment(FVector Point, FVector LineStart, FVector LineEnd) { return FMath::ClosestPointOnLine(LineStart, LineEnd, Point); } bool UTKMathFunctionLibrary::IsPointInsideBox(FVector Point, FVector BoxOrigin, FVector BoxExtent) { FBox Box = FBox::BuildAABB(BoxOrigin, BoxExtent); return FMath::PointBoxIntersection(Point, Box); } bool UTKMathFunctionLibrary::SphereBoxIntersection(FVector SphereOrigin, float SphereRadius, FVector BoxOrigin, FVector BoxExtent) { FBox Box = FBox::BuildAABB(BoxOrigin, BoxExtent); return FMath::SphereAABBIntersection(SphereOrigin, FMath::Square(SphereRadius), Box); } bool UTKMathFunctionLibrary::IsLineInsideSphere(FVector LineStart, FVector LineDir, float LineLength, FVector SphereOrigin, float SphereRadius) { return FMath::LineSphereIntersection(LineStart, LineDir, LineLength, SphereOrigin, SphereRadius); } bool UTKMathFunctionLibrary::LineExtentBoxIntersection(FBox inBox, FVector Start, FVector End, FVector Extent, FVector& HitLocation, FVector& HitNormal, float& HitTime) { return FMath::LineExtentBoxIntersection(inBox, Start, End, Extent, HitLocation, HitNormal, HitTime); } float UTKMathFunctionLibrary::SignedDistancePlanePoint(FVector planeNormal, FVector planePoint, FVector point) { return FVector::DotProduct(planeNormal, (point - planePoint)); } FVector UTKMathFunctionLibrary::ProjectPointOnLine(FVector LineOrigin, FVector LineDirection, FVector Point) { //FVector linePointToPoint = point - linePoint; //float t = FVector::DotProduct(linePointToPoint, lineDir); //return linePoint + lineDir * t; //FVector closestPoint; //OutDistance = FMath::PointDistToLine(point, lineDir, linePoint, closestPoint); //return closestPoint; FVector SafeDir = LineDirection.GetSafeNormal(); return LineOrigin + (SafeDir * ((Point - LineOrigin) | SafeDir)); } void UTKMathFunctionLibrary::ClosestPointsOfLineSegments(FVector Line1Start, FVector Line1End, FVector Line2Start, FVector Line2End, FVector& LinePoint1, FVector& LinePoint2) { FMath::SegmentDistToSegmentSafe(Line1Start, Line1End, Line2Start, Line2End, LinePoint1, LinePoint2); } bool UTKMathFunctionLibrary::LineToLineIntersection(FVector& IntersectionPoint, FVector LinePoint1, FVector LineDir1, FVector LinePoint2, FVector LineDir2) { //Are lines coplanar? if (!FVector::Coplanar(LinePoint1, LineDir1, LinePoint2, LineDir2, DELTA)) { return false; } FVector LineDir3 = LinePoint2 - LinePoint1; FVector CrossDir1And2 = FVector::CrossProduct(LineDir1, LineDir2); FVector CrossDir3And2 = FVector::CrossProduct(LineDir3, LineDir2); float s = FVector::DotProduct(CrossDir3And2, CrossDir1And2) / CrossDir1And2.SizeSquared(); if (s > 1.0f || s < 0.0f) { return false; } else { IntersectionPoint = LinePoint1 + (LineDir1 * s); return true; } } bool UTKMathFunctionLibrary::ClosestPointsOnTwoLines(FVector& closestPointLine1, FVector& closestPointLine2, FVector linePoint1, FVector lineVec1, FVector linePoint2, FVector lineVec2) { float a = FVector::DotProduct(lineVec1, lineVec1); float b = FVector::DotProduct(lineVec1, lineVec2); float e = FVector::DotProduct(lineVec2, lineVec2); float d = a*e - b*b; //lines are not parallel if (d != 0.0f) { FVector r = linePoint1 - linePoint2; float c = FVector::DotProduct(lineVec1, r); float f = FVector::DotProduct(lineVec2, r); float s = (b*f - c*e) / d; float t = (a*f - c*b) / d; closestPointLine1 = linePoint1 + lineVec1 * s; closestPointLine2 = linePoint2 + lineVec2 * t; return true; } else { return false; } } int32 UTKMathFunctionLibrary::PointOnWhichSideOfLineSegment(FVector linePoint1, FVector linePoint2, FVector point) { FVector lineVec = linePoint2 - linePoint1; FVector pointVec = point - linePoint1; float dot = FVector::DotProduct(pointVec, lineVec); //point is on side of linePoint2, compared to linePoint1 if (dot > 0) { //point is on the line segment if (pointVec.Size() <= lineVec.Size()) { return 0; } //point is not on the line segment and it is on the side of linePoint2 else { return 2; } } //Point is not on side of linePoint2, compared to linePoint1. //Point is not on the line segment and it is on the side of linePoint1. else { return 1; } } bool UTKMathFunctionLibrary::AreLineSegmentsCrossing(FVector pointA1, FVector pointA2, FVector pointB1, FVector pointB2) { FVector closestPointA; FVector closestPointB; int32 sideA; int32 sideB; FVector lineVecA = pointA2 - pointA1; FVector lineVecB = pointB2 - pointB1; bool valid = ClosestPointsOnTwoLines(closestPointA, closestPointB, pointA1, lineVecA.GetSafeNormal(), pointB1, lineVecB.GetSafeNormal()); //lines are not parallel if (valid) { sideA = PointOnWhichSideOfLineSegment(pointA1, pointA2, closestPointA); sideB = PointOnWhichSideOfLineSegment(pointB1, pointB2, closestPointB); if ((sideA == 0) && (sideB == 0)) { return true; } else { return false; } } //lines are parallel else { return false; } } FVector UTKMathFunctionLibrary::GridSnap(FVector A, float Grid) { return A.GridSnap(Grid); } void UTKMathFunctionLibrary::ConvertAnchorToAnchor(UObject* WorldContextObject, FAnchors CurrentAnchor, FMargin Offsets, FAnchors TargetAnchor, FMargin& ConvertedOffsets) { if (CurrentAnchor.Minimum == TargetAnchor.Minimum && CurrentAnchor.Maximum == TargetAnchor.Maximum) { ConvertedOffsets = Offsets; return; } FVector2D View = FVector2D(1, 1); UWorld* World = GEngine->GetWorldFromContextObjectChecked(WorldContextObject); if (World && World->IsGameWorld()) { if (UGameViewportClient* ViewportClient = World->GetGameViewport()) { ViewportClient->GetViewportSize(View); } } FMargin ZeroAnchorOffsets = Offsets; //Convert to 0,0 anchor first. if (CurrentAnchor.Minimum != FVector2D(0, 0) || CurrentAnchor.Maximum != FVector2D(0, 0)) { ZeroAnchorOffsets.Left = View.X * CurrentAnchor.Minimum.X + Offsets.Left; ZeroAnchorOffsets.Top = View.Y * CurrentAnchor.Minimum.Y + Offsets.Top; if (CurrentAnchor.Minimum.X != CurrentAnchor.Maximum.X) { ZeroAnchorOffsets.Right = View.X * CurrentAnchor.Maximum.X - (Offsets.Right + Offsets.Left); } if (CurrentAnchor.Minimum.Y != CurrentAnchor.Maximum.Y) { ZeroAnchorOffsets.Bottom = View.Y * CurrentAnchor.Maximum.Y - (Offsets.Bottom + Offsets.Top); } if (TargetAnchor.Minimum == FVector2D(0, 0) && TargetAnchor.Maximum == FVector2D(0, 0)) { ConvertedOffsets = ZeroAnchorOffsets; return; } } //Convert 0,0 anchor offsets to target anchor offsets. ConvertedOffsets.Left = (-View.X) * TargetAnchor.Minimum.X + ZeroAnchorOffsets.Left; ConvertedOffsets.Top = (-View.Y) * TargetAnchor.Minimum.Y + ZeroAnchorOffsets.Top; ConvertedOffsets.Right = TargetAnchor.Minimum.X != TargetAnchor.Maximum.X ? View.X * TargetAnchor.Maximum.X - (ZeroAnchorOffsets.Left + ZeroAnchorOffsets.Right) : ZeroAnchorOffsets.Right; ConvertedOffsets.Bottom = TargetAnchor.Minimum.Y != TargetAnchor.Maximum.Y ? View.Y * TargetAnchor.Maximum.Y - (ZeroAnchorOffsets.Top + ZeroAnchorOffsets.Bottom) : ZeroAnchorOffsets.Bottom; } float UTKMathFunctionLibrary::ConvertPhysicsLinearVelocity(FVector Velocity, TEnumAsByte SpeedUnit) { if (Velocity.IsZero()) return 0.f; float unit = 0; switch (SpeedUnit) { case CentimeterPerSecond: unit = 1; break; case FootPerSecond: unit = 0.03280839895013; break; case MeterPerSecond: unit = 0.01; break; case MeterPerMinute: unit = 0.6; break; case KilometerPerSecond: unit = 0.00001; case KilometerPerMinute: unit = 0.0006; break; case KilometerPerHour: unit = 0.036; break; case MilePerHour: unit = 0.02236936292054; break; case Knot: unit = 0.01943844492441; break; case Mach: unit = 0.00002915451895044; break; case SpeedOfLight: unit = 3.335640951982E-11; break; case YardPerSecond: unit = 0.01093613298338; break; default: break; }; return Velocity.Size() * unit; } FVector UTKMathFunctionLibrary::GetVelocityAtPoint(UPrimitiveComponent* Target, FVector Point, FName BoneName, bool DrawDebugInfo) { //FTransform Transform = Target->GetComponentTransform(); //FVector LocalLinearVelocity = Transform.InverseTransformVectorNoScale(Target->GetPhysicsLinearVelocity()); //FVector LocalAngularVelocity = Transform.InverseTransformVectorNoScale(Target->GetPhysicsAngularVelocity()); //FVector ResultPointVelocity = LocalLinearVelocity + FVector::CrossProduct(FVector::DegreesToRadians(LocalAngularVelocity), Transform.InverseTransformVectorNoScale(Point - Target->GetCenterOfMass())); if (!Target) return FVector::ZeroVector; //You can actually get it from the physx body instance instead. FBodyInstance* BI = Target->GetBodyInstance(BoneName); if (BI && BI->IsValidBodyInstance()) { FVector PointVelocity = BI->GetUnrealWorldVelocityAtPoint(Point); UWorld* TheWorld = Target->GetWorld(); if (DrawDebugInfo && TheWorld) { FColor DefaultColor(255,200,0); DrawDebugPoint(TheWorld, Point, 10, DefaultColor); DrawDebugString(TheWorld, Point, FString::SanitizeFloat(PointVelocity.Size()), NULL, FColor::White, 0.0f); } return PointVelocity; } return FVector::ZeroVector; } void UTKMathFunctionLibrary::SetCenterOfMassOffset(UPrimitiveComponent* Target, FVector Offset, FName BoneName) { if (!Target) return; FBodyInstance* BI = Target->GetBodyInstance(BoneName); if (BI && BI->IsValidBodyInstance()) { BI->COMNudge = Offset; BI->UpdateMassProperties(); } }