|
|
- // Fill out your copyright notice in the Description page of Project Settings.
-
- #include "RenderWaveform.h"
-
- // KISS Headers, that we need for the decompression part
- #include "ThirdParty/Kiss_FFT/kiss_fft129/kiss_fft.h"
- #include "ThirdParty/Kiss_FFT/kiss_fft129/tools/kiss_fftnd.h"
-
- bool bNormalizeOutputToDb = false;
- bool bShowLogDebug = false;
- bool bShowWarningDebug = false;
- bool bShowErrorDebug = false;
-
- // Log Category
- DECLARE_LOG_CATEGORY_EXTERN(LogRenderWave, Log, All);
-
- // Short Defines to faster debug
- #define PrintLog(TextToLog) if(bShowLogDebug) UE_LOG(LogRenderWave, Log, TextToLog)
- #define PrintWarning(TextToLog) if(bShowWarningDebug) UE_LOG(LogRenderWave, Warning, TextToLog)
- #define PrintError(TextToLog) if(bShowErrorDebug) UE_LOG(LogRenderWave, Error, TextToLog)
-
- #include "Sound/SoundWave.h"
- #include "AudioDevice.h"
- #include "Runtime/Engine/Public/VorbisAudioInfo.h"
- #include "Developer/TargetPlatform/Public/Interfaces/IAudioFormat.h"
-
- DEFINE_LOG_CATEGORY(LogRenderWave);
-
- //float GetFFTInValue(const int16 InSampleValue, const int16 InSampleIndex, const int16 InSampleCount)
- //{
- // float FFTValue = InSampleValue;
- //
- // // Apply the Hann window
- // FFTValue *= 0.5f * (1 - FMath::Cos(2 * PI * InSampleIndex / (InSampleCount - 1)));
- //
- // return FFTValue;
- //}
-
- void CalculateFrequencySpectrum(USoundWave* InSoundWaveRef, const float InStartTime, const float InDuration, TArray<float>& OutFrequencies)
- {
- // Clear the Array before continuing
- OutFrequencies.Empty();
-
- const int32 NumChannels = InSoundWaveRef->NumChannels;
- const int32 SampleRate = InSoundWaveRef->SampleRate;
-
- // Make sure the Number of Channels is correct
- if (NumChannels > 0 && NumChannels <= 2)
- {
- // Check if we actually have a Buffer to work with
- if (InSoundWaveRef->CachedRealtimeFirstBuffer)
- {
- // The first sample is just the StartTime * SampleRate
- int32 FirstSample = SampleRate * InStartTime;
-
- // The last sample is the SampleRate times (StartTime plus the Duration)
- int32 LastSample = SampleRate * (InStartTime + InDuration);
-
- // Get Maximum amount of samples in this Sound
- const int32 SampleCount = InSoundWaveRef->RawPCMDataSize / (2 * NumChannels);
-
- // An early check if we can create a Sample window
- FirstSample = FMath::Min(SampleCount, FirstSample);
- LastSample = FMath::Min(SampleCount, LastSample);
-
- // Actual amount of samples we gonna read
- int32 SamplesToRead = LastSample - FirstSample;
-
- if (SamplesToRead < 0) {
-
- PrintError(TEXT("Number of SamplesToRead is < 0!"));
- return;
- }
-
- // Shift the window enough so that we get a PowerOfTwo. FFT works better with that
- int32 PoT = 2;
-
- while (SamplesToRead > PoT) {
- PoT *= 2;
- }
-
- // Now we have a good PowerOfTwo to work with
- SamplesToRead = PoT;
-
- // Create two 2-dim Arrays for complex numbers | Buffer and Output
- kiss_fft_cpx* Buffer[2] = {0};
- kiss_fft_cpx* Output[2] = {0};
-
- // Create 1-dim Array with one slot for SamplesToRead
- int32 Dims[1] = {SamplesToRead};
-
- // alloc once and forget, should probably move to a init/deinit func
- static kiss_fftnd_cfg STF = kiss_fftnd_alloc(Dims, 1, 0, nullptr, nullptr);
-
- int16* SamplePtr = reinterpret_cast<int16*>(InSoundWaveRef->CachedRealtimeFirstBuffer);
-
- // Allocate space in the Buffer and Output Arrays for all the data that FFT returns
- for (int32 ChannelIndex = 0; ChannelIndex < NumChannels; ChannelIndex++)
- {
- Buffer[ChannelIndex] = (kiss_fft_cpx*)KISS_FFT_MALLOC(sizeof(kiss_fft_cpx) * SamplesToRead);
- Output[ChannelIndex] = (kiss_fft_cpx*)KISS_FFT_MALLOC(sizeof(kiss_fft_cpx) * SamplesToRead);
- }
-
- // Shift our SamplePointer to the Current "FirstSample"
- SamplePtr += FirstSample * NumChannels;
-
- float precomputeMultiplier = 2.f * PI / (SamplesToRead - 1);
-
- for (int32 SampleIndex = 0; SampleIndex < SamplesToRead; SampleIndex++)
- {
- float rMult = 0.f;
- if (SamplePtr != NULL && (SampleIndex + FirstSample < SampleCount))
- {
- rMult = 0.5f * (1.f - FMath::Cos(precomputeMultiplier * SampleIndex));
- }
- for (int32 ChannelIndex = 0; ChannelIndex < NumChannels; ChannelIndex++)
- {
- // Make sure the Point is Valid and we don't go out of bounds
- if (SamplePtr != NULL && (SampleIndex + FirstSample < SampleCount))
- {
- // Use Window function to get a better result for the Data (Hann Window)
- Buffer[ChannelIndex][SampleIndex].r = rMult * (*SamplePtr);
- }
- else
- {
- Buffer[ChannelIndex][SampleIndex].r = 0.f;
- }
- Buffer[ChannelIndex][SampleIndex].i = 0.f;
-
- // Take the next Sample
- SamplePtr++;
- }
- }
-
- // Now that the Buffer is filled, use the FFT
- for (int32 ChannelIndex = 0; ChannelIndex < NumChannels; ChannelIndex++)
- {
- if (Buffer[ChannelIndex])
- {
- kiss_fftnd(STF, Buffer[ChannelIndex], Output[ChannelIndex]);
- }
- }
-
- OutFrequencies.AddZeroed(SamplesToRead);
-
- for (int32 SampleIndex = 0; SampleIndex < SamplesToRead; ++SampleIndex)
- {
- float ChannelSum = 0.0f;
-
- for (int32 ChannelIndex = 0; ChannelIndex < NumChannels; ++ChannelIndex)
- {
- if (Output[ChannelIndex])
- {
- // With this we get the actual Frequency value for the frequencies from 0hz to ~22000hz
- ChannelSum += FMath::Sqrt(FMath::Square(Output[ChannelIndex][SampleIndex].r) + FMath::Square(Output[ChannelIndex][SampleIndex].i));
- }
- }
-
- if (bNormalizeOutputToDb)
- {
- OutFrequencies[SampleIndex] = FMath::LogX(10, ChannelSum / NumChannels) * 10;
- } else
- {
- OutFrequencies[SampleIndex] = ChannelSum / NumChannels;
- }
- }
-
- // Make sure to free up the FFT stuff
- // KISS_FFT_FREE(STF);
-
- for (int32 ChannelIndex = 0; ChannelIndex < NumChannels; ++ChannelIndex)
- {
- KISS_FFT_FREE(Buffer[ChannelIndex]);
- KISS_FFT_FREE(Output[ChannelIndex]);
- }
- } else {
- PrintError(TEXT("InSoundVisData.PCMData is a nullptr!"));
- }
- } else {
- PrintError(TEXT("Number of Channels is < 0!"));
- }
- }
-
- void URenderWaveform::BP_RenderWaveform(USoundWave* InSoundWaveRef, UProceduralMeshComponent* Mesh, float InSongPosition, int SizeX){
- if (!IsValid(InSoundWaveRef)){
- return;
- }
- if (!IsValid(Mesh)){
- return;
- }
-
- int nbVert = Mesh->GetProcMeshSection(0)->ProcVertexBuffer.Num();
- bool valid;
-
- TArray<FVector> Vertices;
- TArray<FVector> Normals;
- TArray<FVector2D> UV0;
- TArray<FLinearColor> VertexColors;
- TArray<FProcMeshTangent> Tangents;
-
- Vertices.AddDefaulted(nbVert);
- Normals.Init(FVector(0.0f, 0.0f, 1.0f), nbVert);
- UV0.AddDefaulted(nbVert);
- VertexColors.AddDefaulted(nbVert);
- Tangents.Init(FProcMeshTangent(1.0f, 0.0f, 0.0f), nbVert);
-
- for (size_t i = 0; i < 160; ++i){
- float duration = (1 / 64.f);
- float startTime = duration * i + InSongPosition;
-
- valid = true;
- if (startTime < 0.0f || startTime >= InSoundWaveRef->Duration || startTime + duration >= InSoundWaveRef->Duration) {
- valid = false;
- }
-
- TArray<float> results;
-
- if (valid) CalculateFrequencySpectrum(InSoundWaveRef, startTime, duration, results);
-
- for (size_t j = 0; j < 64; ++j){
- float height;
-
- if (valid) height = results[j * 8.f] / 50000.f;
- else height = 0;
-
- Vertices[To1D(i, j, SizeX)] = FVector(i, j, height);
- VertexColors[To1D(i, j, SizeX)] = FLinearColor(height, 0.0f, 0.0f);
- }
- }
-
- Mesh->UpdateMeshSection_LinearColor(0, Vertices, Normals, UV0, VertexColors, Tangents);
-
- return;
- }
-
- void URenderWaveform::BP_GenerateSpectrogramMesh(UProceduralMeshComponent* Mesh, int SizeX, int SizeY)
- {
- if (!IsValid(Mesh) || SizeX <= 0 || SizeY <= 0) {
- return;
- }
-
- TArray<FVector> Vertices;
- TArray<int> Faces;
- TArray<FVector> Normals;
- TArray<FVector2D> UV0;
- TArray<FLinearColor> VertexColors;
- TArray<FProcMeshTangent> Tangents;
-
- Vertices.AddDefaulted(SizeX * SizeY);
- Normals.AddDefaulted(SizeX * SizeY);
- UV0.AddDefaulted(SizeX * SizeY);
- VertexColors.AddDefaulted(SizeX * SizeY);
- Tangents.AddDefaulted(SizeX * SizeY);
- Faces.AddZeroed((SizeX - 1) * (SizeY - 1) * 6);
-
- for (int j = 0; j < SizeY; ++j)
- {
- for (int i = 0; i < SizeX; ++i)
- {
- Vertices[To1D(i, j, SizeX)] = FVector(i,j, 0.0f);
- Normals[To1D(i, j, SizeX)] = FVector(0.0f, 0.0f, 1.0f);
- UV0[To1D(i, j, SizeX)] = FVector2D(0.0f, 0.0f);
- VertexColors[To1D(i, j, SizeX)] = FLinearColor(0.0f, 0.0f, 0.0f);
- Tangents[To1D(i, j, SizeX)] = FProcMeshTangent(1.0f, 0.0f, 0.0f);
- }
- }
-
- for (int j = 0; j < SizeY - 1; ++j)
- {
- for (int i = 0; i < SizeX - 1; ++i)
- {
- Faces[To1D(i, j, SizeX - 1) * 6] = To1D(i, j, SizeX);
- Faces[To1D(i, j, SizeX - 1) * 6 + 1] = To1D(i, j + 1, SizeX);
- Faces[To1D(i, j, SizeX - 1) * 6 + 2] = To1D(i + 1, j, SizeX);
-
- Faces[To1D(i, j, SizeX - 1) * 6 + 3] = To1D(i + 1, j, SizeX);
- Faces[To1D(i, j, SizeX - 1) * 6 + 4] = To1D(i, j + 1, SizeX);
- Faces[To1D(i, j, SizeX - 1) * 6 + 5] = To1D(i + 1, j + 1, SizeX);
- }
- }
-
- Mesh->CreateMeshSection_LinearColor(0, Vertices, Faces, Normals, UV0, VertexColors, Tangents, false);
- }
-
- int URenderWaveform::To1D(int x, int y, int sizeX)
- {
- return (sizeX * y) + x;
- }
|